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We present a systematic comparison of the most recent thermodynamic measurements of a trapped Fermi
gas at unitarity with predictions from strong-coupling theories and quantum Monte Carlo �MC� simulations.
The accuracy of the experimental data, of the order of a few percent, allows a precise test of different
many-body approaches. We find that a Nozières and Schmitt-Rink treatment of fluctuations is in excellent
agreement with the experimental data and available MC calculations at unitarity.
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The theory of strongly interacting fermions is of great
interest. Interacting fermions are involved in some of the
most important unanswered questions in condensed matter
physics, nuclear physics, astrophysics, and cosmology.
Though weakly interacting fermions are well understood,
new approaches are required to treat strong interactions. In
these cases, one encounters a “strongly correlated” picture
which occurs in many fundamental systems ranging from
strongly interacting electrons to quarks.

The main theoretical difficulty lies in the absence of any
small coupling parameter in the strongly interacting regime,
which is crucial for estimating the errors of approximate ap-
proaches. Although there are numerous efforts to develop
strong-coupling perturbation theories of interacting fermions,
notably the many-body T-matrix fluctuation theories �1–10�,
their accuracy is not well understood. Quantum Monte Carlo
�QMC� simulations are also less helpful than one would like,
due to the sign problem for fermions �11� or, in the case of
lattice calculations �12,13�, the need for extrapolation to the
zero filling factor limit.

Recent developments in ultracold atomic Fermi gases
near a Feshbach resonance with widely tunable interaction
strength, densities, and temperatures have provided a unique
opportunity to quantitatively test different strong-coupling
theories �14–18�. In these systems, when tuned to have an
infinite s-wave scattering length—the unitarity limit—a
simple universal thermodynamic behavior emerges �19,20�.
Due to the pioneering efforts of many experimentalists, the
accuracy of thermodynamic measurements at unitarity has
improved significantly. A breakthrough occurred in early
2007, when both energy and entropy in trapped Fermi gases
were measured without invoking any specific theoretical
model �18�. This milestone experiment, arguably the most
accurate measurement in cold atoms, has an accuracy at the
level of a few percent.

In this Rapid Communication, using experimental data as
a benchmark, we present an unbiased test of several strong-
coupling theories that are commonly used in the literature,
including QMC simulations. From this comparison, we show
that the simplest theory which incorporates pairing fluctua-
tions appears to be quantitatively accurate at unitarity. This is
the T-matrix approximation pioneered by Nozières and
Schmitt-Rink �NSR� �1� and others �2,5�, as recently applied
to trapped gases in the below threshold superfluid regime �8�.

We find it describes the observed thermodynamics extremely
well at all temperatures at unitarity, except in regions very
near the superfluid transition temperature Tc.

The comparisons show that the simple NSR approxima-
tion gives excellent results. This appears to be related to the
important symmetry property of scale invariance �21�, which
is a necessary feature of any exact theory at unitarity, and is
shared by the NSR approach. Our comparative results should
therefore be useful in developing theoretical approaches for
strong interacting fermions, and are relevant to many fields
of physics. In particular, our results might shed light on the
applicability of different T-matrix approximations to high-Tc
superconductors and neutron stars, which are of interest to
the condensed matter and astrophysics communities.

The strong-coupling theories that we compare include
several T-matrix fluctuation and QMC theories. We refer to
Refs. �12,13� for a detailed description of QMC methods,
and briefly review different T-matrix theories. These involve
an infinite set of diagrams—the ladder sum in the particle-
particle channel. It is generally accepted that this ladder sum
is necessary for taking into account strong pair fluctuations
in the strongly interacting regime, since it is the leading class
of all sets of diagrams �22�.

The diagrammatic structure of different T-matrix theories
may be clarified above Tc for a single-channel model �7�,
where one writes for the T matrix, t�Q�=U / �1+U��Q��.
Here and throughout, Q= �q , i�n�, K= �k , i�m�, while U−1

=m / �4��2a�−�km /�2k2 is the bare contact interaction ex-
pressed in terms of the s-wave scattering length. We use
�K=kBT�m�k, where q and k are wave vectors, while �n and
�m are bosonic and fermionic Matsubara frequencies.

Different T-matrix fluctuation theories differ in their
choice of the particle-particle propagator �22�

��Q� = �
K

G��K�G��Q − K� , �1�

and the associated self-energy, ��K�=�Qt�Q�G	�Q−K�. The
subscripts �, �, and 	 in the above equations can either be
set to “0,” indicating a noninteracting Green’s function
G0�K�=1 / �i�m−�2k2 /2m+
�, or be absent, indicating a
fully dressed interacting Green’s function. In these cases a
Dyson equation, G�K�=G0�K� / �1−G0�K���K��, is required
to self-consistently determine G and �. The only free param-
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eter, the chemical potential 
, is fixed by the number equa-
tion, N=2�KG�K�.

By taking different combinations of �, �, and 	, there are
six distinct choices of the T-matrix approximation, for which
a nomenclature of �G�G��G	 will be used. As noted earlier,
there is no known a priori theoretical justification for which
is the most appropriate. While having the same diagrammatic
structure, the T-matrix approximations we use above and be-
low Tc are computationally different, owing to the use of
different G0 �or G�. Below Tc, these Green’s functions are
2�2 matrices.

The simplest choice, �G0G0�G0, was pioneered by NSR
above Tc using the thermodynamic potential �1�, with a trun-
cated Dyson equation for G, i.e., G=G0+G0�G0. This
theory was extended to the broken-symmetry superfluid
phase by several authors �4,5,8,23�, using the mean-field
2�2 matrix BCS Green’s function as “G0.“ In Ref. �8�, it
was shown that the resulting ground state energy is in excel-
lent agreement with the zero-temperature QMC calculation
for all interaction strengths. The NSR approximation is the
simplest scheme that includes the effects of particle-particle
fluctuations. It does not attempt to be self-consistent. In the
other extreme, one may consider a �GG�G approximation,
with a fully self-consistent propagator. This was investigated
in detail by Haussmann et al., both above �3� and below Tc
�10�. Below Tc an ad hoc renormalization of the interaction
strength is required to obtain a gapless phonon spectrum.

We also consider an intermediate scheme having an asym-
metric form for the particle-particle propagator, i.e.,
�GG0�G0. This has been discussed in a series of papers by
Chen et al. �7�, based on the assumption that this treatment
of fluctuations is consistent with the simpler BCS theory at
low temperatures. Although the theory has been explored
numerically to some extent �24�, a complete numerical solu-
tion has not been implemented previously. A simplified ver-
sion �7� of the �GG0�G0 fluctuation theory was introduced
based on a decomposition of the T-matrix t�Q� in terms of a
condensate part and a pseudogap part. In this Rapid Commu-
nication, we refer to this approach as the “pseudogap model”
and will include it in our comparative study.

Other strong-coupling theories with an artificial small pa-
rameter have been developed recently, including an � expan-
sion around the critical dimension �25� and a 1 /N expansion
for a 2N-component gas �26�. These field-theoretic ap-
proaches provide very useful but so far only qualitative in-
formation about universal thermodynamics valid at unitarity.
In the Boltzmann regime at high temperatures, not explored
experimentally so far, it is possible to make a virial expan-
sion in terms of fugacity �27�. We have verified that the three
T-matrix schemes we study here do correctly include the
dominant second-order virial contribution in the high-
temperature region.

Figure 1 compares the temperature dependence of the
chemical potential at unitarity, calculated from different
T-matrix schemes and lattice QMC simulations. The
T-matrix approximations above Tc have been solved using an
adaptive step Fourier transform method. Below Tc, the NSR
and �GG�G results are from Refs. �8,10�, respectively. The
�GG0�G0 approximation below Tc has not been worked out
yet. The QMC results are taken from Refs. �12,13�. However,

these lattice calculations may have systematic errors due to
an extrapolation to the zero filling factor limit which is nec-
essary to have a well-defined continuum theory. Nonetheless,
the three T-matrix calculations agree well with the lattice
QMC simulations. On the other hand, the prediction of the
pesudogap model above Tc differs substantially from the
�GG0�G0 results, for which it is an approximation. The
pseudogap model omits important features of the full
�GG0�G0 theory, due to the “condensate” + “pseudogap” de-
composition of the T matrix.

The determination of energy and entropy is a subtle prob-
lem. It is known that universal thermodynamics at unitarity
implies a rigorous scaling relation �19�, P=−=2E /3,
which relates the pressure �or thermodynamic potential� and
the energy density for a unitarity gas in the same way as for
an ideal, noninteracting quantum gas, although the energy
densities are quite different. Apart from the �GG�G scheme
above Tc and the NSR approach �in both regimes�, strong-
coupling theories in general do not satisfy this essential scal-
ing relation. The violation is typically at the level of a few
percent, comparable to the accuracy of the experimental data
we used. For quantitative purposes, we calculate the thermo-
dynamic potential from the chemical potential, using

�
,T = const� = − �

0




n�
��d
� + �
0,T� �2�

at a given temperature. Here, the lower bound of the integral

0 is sufficiently small so that �
0 ,T� can be obtained
accurately from a high-temperature virial expansion �27�.
The energy and entropy can then be calculated from the rig-
orous scaling relations, E=−3 /2, and S= �−5 /2−
N� /T,
valid at unitarity.

The energy and entropy obtained in this manner are given
in Fig. 2, and compared to the predictions of QMC calcula-
tions. There is a reasonable agreement between T-matrix
theories and the lattice QMC simulations. For the energy, we
also show the path-integral Monte Carlo results of Akkineni
et al. for the continuum model �11�. At temperatures above

FIG. 1. �Color online� Chemical potential of a uniform Fermi
gas at unitarity as a function of reduced temperature T /TF, where
TF=�F /kB. The lines plotted are the results of NSR �solid lines�,
�GG0�G0 �dashed line�, �GG�G �dotted line�, and pesudogap model
�dotted-dashed line�. These predictions are compared with lattice
QMC simulations �symbols�.
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0.2TF, the energy lies systematically below that of all the
T-matrix theories. This is probably due to the use of a finite
effective range r0 for the interaction �11�, i.e., kFr0�0.3.
Compared to the QMC results, the pseudogap model appears
to provide the least accurate predictions for energy and en-
tropy. At low temperatures it predicts a T3/2 dependence for
the entropy, which is characteristic of a noninteracting ideal
Bose condensed gas. In contrast, the T-matrix entropies fol-
low a T3 scaling law, arising from the Bogoliubov-Anderson
phonon modes �10�.

We now compare theoretical predictions with experimen-
tal data �18�. A strongly interacting Fermi gas of N=1.3�2�
�105 lithium atoms is prepared in a Gaussian trap V�r�
=V0�1−exp�−m���

2 �2+�z
2z2� / �2V0��	 with V0�10EF at a

magnetic field B=840 G, slightly above the resonance posi-
tion B0=834 G. The large but finite interaction, kFa=−20.0,
leads to an approximately 1% correction that is not ac-
counted for experimentally. The energy is determined in a
model-independent way from the mean square radius 
z2� of
the strongly interacting cloud, according to the virial theo-
rem, which states that the potential energy ��
z2�� of the gas
is a half of its total energy. The entropy of the gas is cali-
brated again from the cloud size, but after an adiabatic sweep
to a weakly interacting gas with kFa=−0.75, using a precise
theory at weak coupling. We refer to Refs. �18,20� for further
details. To determine the energy and entropy theoretically,
we apply the local density approximation by assuming that
the system can be treated as locally uniform, with a position-
dependent local chemical potential 
hom�n�r� ,T /TF�n��=

−V�r�, where TF�n� is the local Fermi temperature. From this
condition, the density profile is obtained, and the total energy
and entropy are calculated.

Figure 3 shows the interaction energy vs entropy in a
harmonic trap as predicted by the strong-coupling theories in
comparison with experimental data. All results of perturba-

tion theories, except that of the NSR approach, were not
reported previously to our knowledge. The energy is ex-
pressed in units of the Fermi energy at zero temperature in a
harmonic trap: EF= �3N��

2 �z�1/3=kBTF. To emphasize the ef-
fects of interactions, we have subtracted the ideal gas result
EIG. No adjustable parameters have been used theoretically
or experimentally. This comparison is therefore an unbiased
test of how well T-matrix theories agree with experiment
�18�.

The difference between different T-matrix schemes,
mostly of the order 0.05NEF, is relatively small and thus
nearly indistinguishable in the plot of total energy and en-
tropy. Despite this, the extraordinary precision of the mea-
surements is able to discriminate between these theories in
the interaction energy, as given in Fig. 3. The NSR approach
is seen to give the best fit to the experimental data below Tc
�corresponding to Sc�2.3NkB� and above T=0.5TF �corre-
sponding to S�3.5NkB�. This indicates that the simplest
non-self-consistent T-matrix approximation captures the es-
sential physics of strong pair fluctuations at both low �super-
fluid� and high �normal� temperatures. Around Tc, the experi-
mental data shows evidence of what could be a first-order
superfluid transition. However, due to “critical slowing-
down,” systematic experimental errors cannot be ruled out in
this regime, if the magnetic field sweep is not quite adiabatic.

In the temperature region just above Tc, the NSR ap-
proach presumably does not fully capture the full effect of
fluctuations, compared to the self-consistent �GG�G theory
above Tc. At the transition, from the experimental data one
may determine experimentally a critical entropy Sc /N
�2.3kB and a critical energy Ec /N�0.86EF in a trap. The
critical temperature Tc /TF in the case of a trap is difficult to
determine, due to the unknown relation S�T�. The theoretical
predictions are 0.29 �NSR�, 0.21 ��GG0�G0 and �GG�G�, and
0.27 �pseudogap model�.

In a further comparison, we include in Fig. 3 a recent
QMC calculation �thin solid line� of trapped Fermi gases
�28�. There is a noticeable systematic difference between the
QMC and experimental data at high entropy, but this is due
to the improper use of an ideal gas approximation in the
QMC estimates for large T. It is clear that the unitarity gas
remains strongly interacting even close to the degenerate
temperature �i.e., S�5NkB�. Thus, a virial expansion of the

FIG. 2. �Color online� Temperature dependence of the energy
�upper panel� and of the entropy �lower panel� of a uniform Fermi
gas at unitarity, obtained from different T-matrix approximations
and QMC simulations as indicated.

FIG. 3. �Color online� Theoretically predicted universal thermo-
dynamics in comparison with experimental data �18�.
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equation of state up to the second order should be applied.
Among all pair fluctuating theories, Fig. 3 shows that the
pseudogap approximation gives poor agreement with ther-
modynamic data, though it is better than BCS mean-field
theory—which completely ignores the pairing fluctuations.
Therefore, the pseudogap model does not describe the strong
fluctuations at unitarity as well as the full �GG0�G0 theory.

In conclusion, the accurate thermodynamic measurements
at Duke University have allowed us to perform a test of
strong-coupling T-matrix theories at unitarity. The simplest
NSR approximation for the particle-particle T matrix is
found to give the best quantitative description. Further work
is needed to understand the reason for this, but we conjecture

that it is related to scale-invariance symmetry in the unitarity
limit. We conclude that for a strongly interacting Fermi gas
near a Feshbach resonance, the NSR approximation is sur-
prisingly useful.
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